183 | 0 | 103 |
下载次数 | 被引频次 | 阅读次数 |
近年来多起中小型水库土石坝漫而未溃案例突破了土坝“漫顶即溃”的传统认知。针对水头较低、溃坝下游影响较小的中低土石坝,适宜的坝面防护与泄流技术可延缓漫顶溃决过程,在提升大坝防御超标准洪水能力的同时也为下游群众撤离争取了宝贵时间。基于近年典型水库大坝漫顶案例的出险过程特征,从提升中小型水库土石坝防漫顶溃决能力角度,梳理了在设计洪水计算方法、工程措施技术、应急抢险技术、风险监控与预警等方面的研究进展,提出了亟待突破的关键技术难题,包括变化环境下超标准洪水内涵定义、多要素作用下漫顶冲蚀特性与溃决机理、坝面防护新型结构、泄洪能力提升改造、应急抢险技术与装备等。为构建中小型水库土石坝防漫顶溃决技术体系,围绕变化环境下中小型水库设计洪水计算与洪水标准确定方法、土石坝漫顶溃决模拟与临界阈值确定方法、土石坝坝面防护新型结构及泄洪能力提升改造技术、土石坝防漫溃应急抢险技术装备集成与示范等方面提出对策建议,旨在为提升中小型水库土石坝工程韧性与风险防控能力提供技术支撑。
Abstract:In recent years, several instances where small and medium-sized reservoirs with earth-rock dams experienced overtopping without subsequent failure have challenged the traditional notion that “overtopping leads to inevitable breaching”. For earth-rock dams with low water heads and minimal downstream impact,appropriate dam surface protection and discharge technologies can delay the overtopping failure process.This not only enhances the dam's capacity to withstand floods exceeding standard levels but also provides valuable time for downstream evacuations. Based on the characteristics of recent overtopping incidents in typical reservoir dams, this paper reviews advancements in design flood calculation methods, engineering measures, emergency response technologies, and risk monitoring and early warning systems to improve the overtopping failure resistance of small and medium-sized earth-rock dams. Key technical challenges identified include defining the concept of floods exceeding standard levels in changing environments, understanding overtopping erosion characteristics and failure mechanisms under multiple factors, developing new dam surface protection structures, enhancing flood discharge capacity, and improving emergency response technologies and equipment. To establish a technical framework for preventing overtopping failure in small and mediumsized reservoirs with earth-rock dams, this paper proposes strategies focusing on design flood calculation and standard determination methods in changing environments, simulation of overtopping failure and determination of critical thresholds, development of new dam surface protection structures and technologies to enhance flood discharge capacity, and integration and demonstration of emergency response technologies and equipment. The goal is to provide technical support for enhancing the resilience and risk prevention capabilities of small and medium-sized reservoir earth-rock dam projects.
[1]盛金保,李宏恩,盛韬桢.我国水库溃坝及其生命损失统计分析[J].水利水运工程学报,2023(1):1-15.
[2]程晓陶.2021年郑州“7·20”特大暴雨洪涝灾害郭家咀水库案例的教训与反思[J].中国防汛抗旱,2022,32(3):32-36.
[3]ZHANG Y S,CHEN Q,HAO Z Y,et al.Study of the Sheyuegou dam breach-Experience with the postfailure investigation and back analysis[J].Engineering failure analysis,2021,125(1):105441.
[4]张士辰,李宏恩.近期我国土石坝溃决或出险事故及其启示[J].水利水运工程学报,2023(1):27-33.
[5]吴勇拓,李致家,戚振亚,等.基于水文模型的缺资料流域设计洪水计算[J].河海大学学报(自然科学版),2023,51(6):1-8+17.
[6]梁忠民,胡义明,王军.非一致性水文频率分析的研究进展[J].水科学进展,2011,22(6):864-871.
[7]冯平,黄凯.水文序列非一致性对其参数估计不确定性影响研究[J].水利学报,2015,46(10):1145-1154.
[8]谢平,陈广才,夏军.变化环境下非一致性年径流序列的水文频率计算原理[J].武汉大学学报(工学版),2005(6):6-9+15.
[9]郭生练,刘章君,熊立华.设计洪水计算方法研究进展与评价[J].水利学报,2016,47(3):302-314.
[10]赵亮,魏铁鑫,王丽荣,等.基于综合强度指数和受灾面积的区域性暴雨过程的客观识别及特征分析[J].气候与环境研究,2024,29(4):430-442.
[11]高筱懿,赵俊虎,周杰,等.1961-2018年长江中下游地区暴雨过程的客观识别及其变化特征[J].气候变化研究进展,2021,17(3):329-339.
[12]金双彦,蒋昕晖.基于霍顿下渗能力曲线的流域产汇流计算[J].水资源研究,2017,6(4):317-323.
[13]原文林,付磊,高倩雨.基于HEC-HMS模型的山洪灾害临界雨量研究[J].人民黄河,2019,41(8):22-27+31.
[14]黄艳,李昌文,李安强,等.超标准洪水应急避险决策支持技术研究[J].水利学报,2020,51(7):805-815.
[15]刘火箭,王晓刚,李云,等.超标准洪水条件下土石坝防洪及抢护技术综述[J].人民黄河,2012,34(7):10-16.
[16]朱太顺.防汛抢险关键技术研究[J].人民黄河,2003(3):1-2+46.
[17]王小东,徐进超,赵君,等.城市曲面应急防洪屏结构优化研究[J].防灾减灾工程学报,2024,44(4):809-812+825.
[18]陈梁擎,袁沛,章立,等.组合式防洪挡板系统抗冲击能力分析[J].中国防汛抗旱,2018,28(12):70-73.
[19]黄国如,陈文杰,喻海军.城市洪涝水文水动力耦合模型构建与评估[J].水科学进展,2021,32(3):334-344.
[20]石建杨,李向新.基于SWAT模型的滇池流域不同时间尺度径流模拟[J].水电能源科学,2022,40(8):37-40+53.
[21]刘琨,李梦杰,吕振豫,等.SWAT模型在大尺度流域的应用探索[J].水电能源科学,2023,41(4):35-38.
[22]杨恒,雷享勇,郑辉,等.Noah-MP陆面过程模式在雅鲁藏布江流域径流模拟中的适用性评估[J].科学通报,2024,69(Z1):630-644.
[23]龚佳辉,侯精明,薛阳,等.城市雨洪过程模拟GPU加速计算效率研究[J].环境工程,2020,38(4):164-169+175.
[24]刘明潇,朱勇杰,胡昊,等.城市新区极端雨洪汇流淹没特性与致灾机理调查研究--以郑州“7·20”特大暴雨(郑东新区)为例[J].水利学报,2024,55(3):288-300.
[25]杜佳锴,徐梦华,陈昱宏,等.无管网资料地区城市雨洪过程模拟研究[J].水力发电学报,2023,42(2):87-96.
[26]冀永鹏,张洪兴,王运涛,等.基于二维浅水方程的城市地面洪水演进数值模拟研究[J].水资源与水工程学报,2020,31(2):42-49+56.
[27]廖耀星,高玮志,张轩,等.基于深度学习和水动力模型的洪水演进快速模拟方法[J].中国防汛抗旱,2024,34(2):16-22.
[28]李云,王晓刚,刘火箭,等.土石坝漫顶过程水力特性分析[J].水动力学研究与进展A辑,2012,27(2):147-153.
基本信息:
DOI:
中图分类号:TV122.4;TV698.237
引用信息:
[1]李宏恩,王芳,王雪冰等.中小型水库土石坝防漫顶溃决技术体系构建思考[J].中国水利,2025,No.1008(06):43-47+52.
基金信息:
国家重点研发计划(2024YFC3210600); 国家自然科学基金项目(U2443231); 中央级公益性科研院所基本科研业务费专项资金项目(Y722003、Y723008)