707 | 5 | 1158 |
下载次数 | 被引频次 | 阅读次数 |
大语言模型(LLMs)是近年来人工智能领域的重大突破,依托Transformer架构与自注意力机制,在超大规模参数下涌现出接近人类的自然语言理解能力,为人类认知、思考、判断和决策提供辅助。当前大语言模型在垂直细分领域的应用已成为热点,特别是基于MOE融合架构的DeepSeek开源发布,为行业大模型应用提供了更为便捷的技术路径,进一步推动了相关研究热潮。“四预”是基于数字孪生水利建设的新型水利智能业务应用,具有专业性强、业务链条长、系统架构复杂等特点,功能完备,但在易用性方面仍有优化空间。基于大语言模型的理解和推理能力分析,首次提出了大模型智能交互L0至L3级分类体系,以意图识别和智能调用为切入点,研究其支撑“四预”平台的交互应用场景和实现技术路径,提出了通过优化“预设内容”和叠加具体问题增强大模型输出确定性的方法,并在通用大模型上进行测试,探索大模型智能调用“四预”平台专业模型的路径,为提升防洪“四预”的交互友好性提供了可行方案,同时也为大语言模型在水利智能业务中的深度应用提供参考。
Abstract:Large language models(LLMs) have emerged as a significant breakthrough in artificial intelligence in recent years. Leveraging the Transformer architecture and self-attention mechanisms, these models exhibit near-human natural language understanding capabilities at an ultra-large scale, assisting human cognition,reasoning, judgment, and decision-making. Currently, the application of LLMs in specialized domains has become a focal point, especially with the open-source release of DeepSeek based on the Mixture of Experts(MOE) architecture, which offers a more accessible technical pathway for industry applications and further stimulates related research. The “four pres”(forecasting, early warning, pre-planning, and emergency response)in flood control represent a novel intelligent business application in water conservancy based on digital twin technology. This system is characterized by strong specialization, lengthy business chains, and complex system architecture. While functionally comprehensive, there remains room for improvement in usability. Based on an analysis of the understanding and reasoning capabilities of large language models, this study proposes, for the first time, a classification system for intelligent interaction with large models, ranging from L0 to L3 levels.Focusing on intent recognition and intelligent invocation, the research explores application scenarios and technical implementation paths that support the “four pres” platform. Methods to enhance the output certainty of large models are proposed by optimizing “preset content” and incorporating specific problem overlays,which are tested on general large models. The study also explores pathways for large models to intelligently invoke professional models within the “four pres” platform, providing feasible solutions to improve interactive friendliness. Additionally, this research offers valuable references for the deep application of large language models in intelligent water conservancy business.
[1]蔡阳.数字赋能海河“23·7”流域性特大洪水防御[J].中国水利,2023(18):13-18.
[2]宋艳飞,张瑶.美国人工智能战略政策新动向及特点分析[J].人工智能,2024(2):70-78.
[3]钱峰,成建国,夏润亮,等.水利大模型的建设思路、构建框架与应用场景初探[J].中国水利,2024(9):9-19.
[4]OUYANG L,WU J,XU J,et al.Training Language Models to Follow Instructions with Human Feedback[J/OL].https://www.researchgate.net/publication/359054867_Training_language_models_to_follow_instructions_with_human_feedback.
[5]LIU P F,YUAN W Z,FU J L,et al.Pre-train,prompt,and predict:A systematic survey of prompting methods in natural language processing[J].ACMComputing Surveys,2023,55(9):1-35.
[6]陈永灿,袁萍,黄实.AI通专模型,运营商应协同发展[J].中国电信业,2024(7):40-43.
[7]张文娟,邓辉,艾政阳,等.我国AI大模型数据集建设发展刍议[J].人工智能,2024(3):85-95.
[8]殷兵,周良,何山,等.多模态虚拟人交互的技术进展和应用[J].人工智能,2024(3):15-26.
[9]李兆石.从大语言模型到通用人工智能:第四次产业革命的滥觞[J].华东科技,2023(4):18-21.
[10]冯钧,吕志鹏,范振东,等.基于大语言模型辅助的防洪调度规则标签设计方法[J].水利学报,2024,55(8):920-930.
[11]HE K,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[12]SHAO Z H,WANG P Y,ZHU Q H,et al.Deepseek math:Pushing the limits of mathematical reasoning in open language models[J/OL].(2024-02-06).http://arxiv.org/pdf/2402.03300v2.
[13]DeepSeek-AI.DeepSeek-R1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning[J/OL].(2025-01-22).http://arxiv.org/pdf/2501.12948.
[14]LIAO H L.Deepseek Large-Scale Model:Technical Analysis And Development Prospect[J].Journal of Computer Science a n d Electrical Engineering,2025,7(1):33-37.
[15]WOLF T,DEBUT L,SANH V,et al.Transformers:State-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2020:38-45.
[16]何果.基于大模型的洪涝灾害防御数字化孪生系统的研究与实现[D].西安:西安理工大学,2024.
[17]蔡阳.以数字孪生流域建设为核心构建具有“四预”功能智慧水利体系[J].中国水利,2022(20):2-6+60.
[18]蔡阳,成建国,曾焱,等.加快构建具有“四预”功能的智慧水利体系[J].中国水利,2021(20):2-5.
[19]吴一戎.遥感技术赋能智慧水利:问题、挑战与建议[J].中国水利,2024(11):1-8.
[20]钱峰,夏润亮.数字孪生水利赋能水利新质生产力发展框架研究[J].中国水利,2024(8):6-10+5.
[21]戴济群.关于因地制宜发展水利新质生产力的思考[J].中国水利,2024(6):6-11.
[22]梁思涵,李涛,窦身堂,等.GPT预训练模型在水利行业应用进展[C]//水利部防洪抗旱减灾工程技术研究中心,《中国防汛抗旱》杂志社,中国水利学会减灾专业委员会.第十四届防汛抗旱信息化论坛论文集.2024:53-61.
[23]张慧敏.Deep Seek-R1是怎样炼成的?[J/OL].深圳大学学报(理工版),(2025-02-11)[2025-02-22].http://kns.cnki.net/kcms/detail/44.1401.N.20250210.1628.002.html.
[24]钟新龙,渠延增,王聪聪,等.国内外人工智能大模型发展研究[J].软件和集成电路,2024(1):80-92.
[25]崔培,张涛,曾斌,等.数字孪生水利动态时空数据底板构建研究[J].中国水利,2025(2):52-64.
[26]周创兵,姚池,杨建华,等.数智技术赋能库坝系统安全管控探讨[J].中国水利,2025(1):7-14.
[27]钱峰,成建国,夏润亮,等.数字孪生水利“天空地水工”一体化监测感知体系构建与应用初探[J].中国水利,2024(24):39-47.
基本信息:
DOI:
中图分类号:TP18;TV87
引用信息:
[1]郭磊,冯钧,直伟等.大语言模型发展研究及其在防洪“四预”平台智能交互的应用探讨[J].中国水利,2025,No.1007(05):29-36.
基金信息:
广东省水利科技创新项目“广东省大中型水库汛期水位动态控制与洪水资源安全利用关键技术研究”