281 | 0 | 159 |
下载次数 | 被引频次 | 阅读次数 |
长江中下游干流水沙条件发生重大变化,河床处于高强度冲刷状态,河道崩岸险情时有发生。为有效应对崩岸对防洪、航运、岸线利用等方面的威胁,水利部长江水利委员会水文局基于多年监测实践和科研项目成果,形成一套“传统与先进监测手段融合、定性与定量预警相结合、信息化平台支撑”的崩岸监测与预警技术体系。监测层面,从早期的人工巡查、河道地形测绘逐步拓展到激光雷达、多波束测深、卫星遥感和无人机巡航等多源信息综合监测;预警层面,经历了从经验判识到基于机理理论与指标体系的量化模型,再到信息化预警平台的建立与推广应用。未来,崩岸监测与预警将与数字孪生水利、大数据、人工智能等最新信息技术深度融合,在孪生数据底板构建、险情实时识别与快速处置、长时段河势模拟与情景预测等方面发挥更大作用,为保障长江安澜与沿江经济社会可持续发展提供有力的技术支撑。
Abstract:Water and sediment conditions in the middle and lower reaches of the Yangtze River have undergone significant changes, resulting in a state of high-intensity erosion of the riverbed and frequent occurrences of riverbank collapses. In order to respond to its threat to flood control, navigation and shoreline utilization, the Hydrological Bureau of Yangtze River Water Resources Commission of MWR has established a monitoring and early warning system with “integration of traditional and advanced monitoring methods, combination of qualitative and quantitative early warning, and support of information platform” based on years of practices and scientific research. Regarding monitoring, manual inspection and river terrain mapping adopted in the early days has been gradually updated to comprehensive ways such as laser radar, multi-beam depth measurement, satellite remote sensing and UAV cruising. Regarding early warning, empirical recognition and quantitative models based on mechanism theory and indicator system have been transformed to formation and extension of information warning platforms. In the future, it shall be deeply integrated with the latest information technology such as digital twin, big data and artifcial intelligence to play a bigger role in establishment of twin data base, real-time identifcation and quick response to dangerous situations, long-term river simulation and scenario prediction and provide technical support for ensuring safety of the Yangtze River and sustainable development of regional economy and society.
[1]褚明华,黄先龙.2016年长江中下游崩岸应急整治思考[J].中国水利,2016(21):10-11+16.
[2]陈敏,沈华中,冯源,等.长江中下游河道近年崩岸应急整治[J].水利水电快报,2017,38(11):15-18+24.
[3]卢金友,朱勇辉,岳红艳,等.长江中下游崩岸治理与河道整治技术[J].水利水电快报,2017,38(11):6-14.
[4]邓宇,赖修蔚,郭亮.长江中下游崩岸监测及分析研究[J].人民长江,2018,49(15):13-17.
[5]刘世振,樊小涛,冯国正,等.现代高时空分辨率崩岸应急监测技术研究进展与展望[J].长江科学院院报,2019,36(10):85-88+93.
[6]冯国正,刘世振,李艳,等.基于GNSS/INS紧耦合的水陆地形三维一体化崩岸监测技术[J].长江科学院院报,2019,36(10):94-99.
[7]栾华龙,刘同宦,高华峰,等.新水沙情势下长江中下游干流岸线保护研究——以扬中市2017年江堤崩岸治理为例[J].人民长江,2019,50(8):14-19.
[8]胡维忠.长江中下游干流河道崩岸状况及其防治[J].长江技术经济,2020,4(1):17-20.
[9]袁帅,李志威,朱玲玲,等.下荆江七弓岭弯道崩岸机理研究[J].泥沙研究,2020,45(1):21-28.
[10]吕馨怡,袁文秀,凌哲,等.江苏长江崩岸预警段监测分析[J].江苏水利,2021(S2):72-75.
[11]夏军强,邓珊珊.冲积河流崩岸机理、数值模拟及预警技术研究进展[J].长江科学院院报,2021,38(11):1-10.
[12]吕庆标,朱勇辉,谢亚光,等.河道崩岸机理研究进展[J].长江科学院院报,2021,38(9):7-13.
[13]孙启航,夏军强,周美蓉,等.层次分析法在荆江河段崩岸影响因素研究中的应用[J].泥沙研究,2021,46(2):21-28.
[14]张幸农,假冬冬,陈长英.长江中下游崩岸时空分布特征与规律[J].应用基础与工程科学学报,2021,29(1):55-63.
[15]岳红艳,吕庆标,朱勇辉,等.河道岸坡水位涨落变化对崩岸影响试验研究[J].人民长江,2021,52(S2):15-20.
[16]夏军强,刘鑫,邓珊珊,等.三峡工程运用后荆江河段崩岸时空分布及其对河床调整的影响[J].湖泊科学,2022,34(1):296-306.
[17]姚仕明,黎礼刚,岳红艳,等.长江中下游崩岸机理与护岸工程技术回顾与展望[J].中国防汛抗旱,2022,32(9):7-15.
[18]龚政,张凯丽,赵堃.多因素作用下河道崩岸过程试验与数值模拟研究[J].中国防汛抗旱,2022,32(9):16-20.
[19]夏军强,邓珊珊,李诺,等.长江中游河道崩岸预警技术及其初步应用[J].中国防汛抗旱,2022,32(9):21-26.
[20]夏军强.长江中下游河道崩岸机理与预警治理[J].中国防汛抗旱,2022,32(9):7.
[21]刘世振,冯国正,张亭,等.一种基于水-雨-工情的新型堤防崩岸综合监测技术应用及探讨[J].水利水电技术(中英文),2022,53(S1):107-110.
[22]李诺,夏军强,邓珊珊,等.长江中游荆江河段典型断面崩岸预警方法及应用[J].人民长江,2023,54(3):9-15.
[23]张帆一,闻云呈,王晓俊,等.长江下游崩岸预警模型水动力指标阈值研究[J].水力发电学报,2023,42(6):53-64.
[24]闫石,林荡,李胜宣,等.基于无人机倾斜摄影的三维重建技术在崩岸监测中的应用[J].成都工业学院学报,2023,26(1):34-39.
[25]原松,沈健.基于数字孪生技术的长江崩岸预警平台设计[J].水利水电快报,2023,44(12):101-106.
[26]陈柯兵,董炳江,朱玲玲,等.基于多源卫星数据的岸线提取与崩岸识别对比研究[J].中国农村水利水电,2023(11):86-92+99.
[27]贺秋华,邹娟,余姝辰,等.基于高分辨率遥感影像的荆江河段南部洪道崩岸监测——以戥盘洲弯道为例[J].测绘通报,2023(9):124-128.
[28]李享,邓彩云,李凌云.河道崩岸评估方法研究进展[J].水利建设与管理,2023,43(8):10-17.
[29]卢金友,周银军,邓彩云,等.长江中下游崩岸险情智能感知预警与防治关键技术研究构想及成果展望[J].工程科学与技术,2024,56(5):1-9.
[30]戴碧碧.无人机协同无人船在淮河崩岸监测中的应用[J].吉林水利,2024(2):37-41.
基本信息:
DOI:
中图分类号:TV882.2
引用信息:
[1]陈柯兵.长江中下游崩岸监测与预警技术研究进展及展望[J].中国水利,2025,No.1009(07):48-54.
基金信息:
国家重点研发计划课题(2023YFC3209502)