71 | 0 | 16 |
下载次数 | 被引频次 | 阅读次数 |
甘肃省定西市受自然条件限制水资源十分短缺,是典型的资源型缺水城市。随着经济社会快速发展和城镇化进程不断加快,定西市水资源供需矛盾日益突出,局部地区地下水水位持续下降,对水资源可持续利用和经济社会可持续发展构成威胁,摸清地下水开发利用现状、揭示区域地下水水位变化情况及其影响因素十分重要。根据定西市水资源特点及水文地质条件、降水情况、地下水类型与超采状况等,以超采区为重点,对当地地下水的水资源总量、开发利用情况进行分析,依据遥感监测数据反演地下水储量在不同时间和空间上的变化,分析地下水水位动态变化规律,梳理了研究区地下水超采整体情况及已采取的应对措施,结合实际情况分析目前地下水超采综合治理存在的主要问题,主要包括:地下水水位持续下降、资源型缺水严重、水资源监管不到位、节水机制不完善、引洮工程水资源利用率较低等,并对其主要原因进行梳理分析,提出做好地下水管控指标确定、强化地下水监管、完善节水体制机制、持续提升引洮水资源利用率、持续做好动态跟踪和监测评估等对策建议。
Abstract:Due to natural constraints, Dingxi City in Gansu Province faces severe water shortages and is a typical resource-based water-scarce city. With rapid economic and social development and accelerating urbanization, the contradiction between water supply and demand has become increasingly acute. In some areas,groundwater levels have continued to decline, posing a threat to the sustainable utilization of water resources and the sustainable development of the economy and society. It is essential to understand the current status of groundwater development and utilization, as well as the variations and influencing factors of groundwater levels. Based on the characteristics of local water resources, hydrogeological conditions, precipitation,groundwater types, and overexploitation status, this study focuses on overexploited areas to analyze the total volume and utilization of groundwater resources. Remote sensing data were used to retrieve the spatiotemporal variations in groundwater storage, and the dynamic patterns of groundwater levels were examined. The study also reviews the overall groundwater overexploitation in the region and the countermeasures already implemented. Key issues identified in the current integrated management of groundwater include continuously declining groundwater levels, severe water scarcity, inadequate supervision, underdeveloped water-saving mechanisms, and low utilization efficiency of water diverted from the Taohe River. Based on an analysis of the underlying causes, recommendations are proposed: defining groundwater control indicators, strengthening monitoring and supervision, improving water-saving systems, enhancing the utilization efficiency of water diverted from the Taohe River, and ensuring effective dynamic tracking and assessment.
[1]钟瑞森,董新光,刘丰,等.新疆平原区地下水资源评价及其结果分析[J].灌溉排水学报,2008(4):29-32.
[2] JONES A,SMART P.Spatial and temporal changes in the structure of groundwater nitrate concentration time series(1935—1999)as demonstrated by autoregressive modelling[J].Journal of Hydrology,2005,310(1-4):201-215.
[3]陈曙光,刘建新,杨晓勇.安徽省阜阳市水资源系统研究Ⅰ地下水均衡计算及其意义[J].地下水,2000(4):149-152.
[4]赵建路,赵耀东,黄钢.陕北安塞—吴旗地区地下水资源测算及水质评价[J].地下水,2006(4):22-24.
[5]张宏卫.秦安盆地农田供水地下水资源分析评价[J].甘肃水利水电技术,2005(2):163-165.
[6] FENG S,HUO Z,KANG S,et al.Groundwater simulation using a numerical model under different water resources management scenarios in an arid region of China[J].Environmental Earth Sciences,2011,62(5):961-971.
[7] HU L,JIAO J J.Calibration of a large-scale groundwater flow model using GRACE data:a case study in the Qaidam Basin,China[J].Hydrogeology Journal,2015,23(7):1305-1317.
[8] MAXWELL M R,Condon E L,Kollet J S.A highresolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J].Geoscientific Model Development,2015,8(3):923-937.
[9] SAKIUR RATM,HOSONO ta ka hi ro,QUILTY JM,et al.Multiscale Groundwater Level Forecasting:Coupling New Machine Learning Approaches with Wavelet Transforms[J].Advances in Water Resources,2020,141.
[10]孙虹洁,赵振华,黄林显,等.多变量LSTM神经网络模型在地下水位预测中的应用[J].人民黄河,2022,44(8):69-75.
[11] ADHIKARY K S,RAHMAN M,GUPTA D A.A stochastic modelling technique for predicting groundwater table fluctuations with Time Series Analysis[J].International Journal of Applied Science and Engineering Research,2012,1(2):238-249.
[12] MIRZAVAND M,GHAZAVI R.A Stochastic Modelling Technique for Groundwater Level Forecasting in an Arid Environment Using Time Series Methods[J].Water Resources Management,2015,29(4):1315-1328.
[13]罗杰文,邓英尔.某平原区地下水位动态变化的ARIMA模型预测研究[J].地下水,2020,42(2):43-45.
[14]王宇,卢文喜,卞建民,等.三种地下水位动态预测模型在吉林西部的应用与对比[J].吉林大学学报(地球科学版),2015,45(3):886-891.
[15]李文超,胡天然,魏永霞.BP-ANN模型在地下水动态预测中的应用研究[J].东北农业大学学报,2009,40(9):44-47.
[16]张斌,刘俊民.基于BP神经网络的地下水动态预测[J].水土保持研究,2012,19(5):235-237.
[17] FAN Y,HU L,WANG H,et al.Machine Learning Methods for Improved Understanding of a Pumping Test in Heterogeneous Aquifers[J].Water,2020,12(5):1342-1342.
[18]郭敏丽,刘天航,毕二平,等.3种机器学习模型在地下水位动态模拟中的效果比较[J].环境工程学报,2024,18(5):1406-1414.
[19]田辽西,覃华清.基于多变量LSTM神经网络的地下水位预测方法研究[J].干旱区资源与环境,2024,38(9):138-146.
基本信息:
DOI:
中图分类号:P641.8
引用信息:
[1]贾翠霞,卢彬.甘肃定西市地下水水位动态及其影响因素分析与对策建议[J].中国水利,2025,No.1013(11):43-50+64.
基金信息:
2025年甘肃省水利科学试验研究及技术推广项目(25GSLK034)